Detecting Fake Websites Using Swarm Intelligence Mechanism in Human Learning

نویسندگان

  • A. Khatibi Bardsiri Department of Computer Engineering, Bardsir branch, Islamic Azad University, Bardsir, Iran
  • F. Parandeh Motlagh Department of Computer Engineering, Kerman branch, Islamic Azad University, Kerman, Iran
چکیده مقاله:

The internet and its various services have made users to easily communicate with each other. Internet benefits including online business and e-commerce. E-commerce has boosted online sales and online auction types. Despite their many uses and benefits, the internet and their services have various challenges, such as information theft, which challenges the use of these services. Information theft or phishing attacks are internet attacks that are major approach to success it is social engineering that the phisher has used. In these types of attacks, the attacker deceives the users and steals their valuable information by using a fake website that looks like real websites. The damage caused by fake websites and phishing attacks is so high that researchers are trying to identify these types of websites in different ways. So far, various methods have been developed to identify phishing web sites which most of them based on data- mining and learning machine are trying to identify these malicious websites. Artificial neural network is a data-mining method for identifying phishing websites which is used in most studies; however the error rate of this can be significant in detecting these websites, so learning-based optimization algorithm is used as a Swarm intelligence algorithm to reduce its error. In the proposed method, the error rate of multi-layer artificial neural network in detecting phishing websites is considered as a target function which minimized by using learning-based optimization algorithm. In the proposed method, learning- based optimization algorithm selects weights and bias of multi-layer artificial neural network optimally to minimize the error of clssification as an objective function. The datasets used to evaluate the proposed method are Phishing Websites explaind by others.  The results of evaluating phishing attack dataset indicate that the rate of error of fake website detection in the proposed method is constantly reduced by repetition. The results of our assessment also indicate that the average accuracy, sensitivity, specificity, precision of the proposed method are 93.42, 92.27, 93.19 and 92.78%, respectively. The decision tree and regression are more accurate in detecting fake websites than artificial neural network.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detecting Fake Websites: The Contribution of Statistical Learning Theory

Fake websites have become increasingly pervasive, generating billions of dollars in fraudulent revenue at the expense of unsuspecting Internet users. The design and appearance of these websites makes it difficult for users to manually identify them as fake. Automated detection systems have emerged as a mechanism for combating fake websites, however most are fairly simplistic in terms of their f...

متن کامل

Stock Price Prediction using Machine Learning and Swarm Intelligence

Background and Objectives: Stock price prediction has become one of the interesting and also challenging topics for researchers in the past few years. Due to the non-linear nature of the time-series data of the stock prices, mathematical modeling approaches usually fail to yield acceptable results. Therefore, machine learning methods can be a promising solution to this problem. Methods: In this...

متن کامل

Evaluating Link-Based Techniques for Detecting Fake Pharmacy Websites

Fake online pharmacies have become increasingly pervasive, constituting over 90% of online pharmacy websites. There is a need for fake website detection techniques capable of identifying fake online pharmacy websites with a high degree of accuracy. In this study, we compared several well-known link-based detection techniques on a large-scale test bed with the hyperlink graph encompassing over 8...

متن کامل

Improved Awareness on Fake Websites and Detecting Techniques

Fake website pages use the similar page layout, font style and picture to mimic legitimate web pages in an effort to convince internet users to give their personal sensitive information such as bank account number, passwords, personal details etc and also sell fake products like fake ticket, duplicate brand cloths, medication etc. There are many available techniques in the market to identify th...

متن کامل

Detecting Symmetry in Cellular Automata Generated Patterns Using Swarm Intelligence

Since the introduction of cellular automata in the late 1940’s they have been used to address various types of problems in computer science and other multidisciplinary fields. Their generative capabilities have been used for simulating and modelling various natural, physical and chemical phenomena. Besides these applications, the lattice grid of cellular automata has been providing a by-product...

متن کامل

Detecting Fake Escrow Websites using Rich Fraud Cues and Kernel Based Methods

The ability to automatically detect fraudulent escrow websites is important in order to alleviate online auction fraud. Despite research on related topics, fake escrow website categorization has received little attention. In this study we evaluated the effectiveness of various features and techniques for detecting fake escrow websites. Our analysis included a rich set of features extracted from...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 31  شماره 10

صفحات  1642- 1650

تاریخ انتشار 2018-10-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023